Biomimetic Coordination and Cooper ation of M ultiple Rovers

MajaMataric
University of Southern California
Associate Director, USC Robotics Laboratory

Since 1990, we have been working on coordination of multiple mobile robots, using distributed, low-
computation, local methods. Thiswork wasinitiated at MIT, and is not being continued at USC. The
continuing goal of thiswork has been to take themes from biology, including decentralized, distributed
control based on individual, local sensing and limited computation, and apply them to engineering
domains such as distributed exploration and cooperation, with applications in space exploration, aswell as
Earth de-mining, toxic spill cleanup, agriculture, etc. Our work is demonstrated and evaluated on groups of
physical mobile robots with on-board power, computation, and sensing.

The biological motivation of our work is particularly relevant, because multi-robot control is not well
handled with standard, centralized approaches, which require a bottleneck controller to acquire complete
sensory and state information of all individualsin order to plan their actions. Such solutions have been
demonstrated to be intractable for groups larger than two or three robots, when the robots are placed in real-
world environments even as simple as robotics |aboratories, not to mention other planets and asteroids.

Our work has focused on developing robugt, reliable, and repeatable strategies for using local control of
individual robots which resultsin coherent and efficient global behavior of the group. Our experiments
have robustly demonstrated the largest coordinated real-robot behaviors to date, with groups of 13 robots
displaying movement in formation (flocking, following, homing, herding), and were thefirst to
demonstrate such large-group coordination of physical mobile robots.

Our more recent work has demonstrated multi-agent and robot distributed mapping, adaptive task division,
movement in formation, space coverage, and multi-robot adaptation and learning in complex, noisy, and
non-stationary domains. The agents and robots are able to learn, in real time, using smple on-board
processing, to behave more optimally relative to the others. Importantly, this adaptation happens on a short
time-scale (on the order of 10-15 minutes, rather than the usual hours required for machine learning
techniques) and thus enables equally fast adjustment of the individual and group behavior as the dynamics
of the task change over time.

Thiswork findsits basis deeply rooted in principles and data from neuroscience and ethology. The former
provides constraints on the organization of behaviors as underlying structures for control (such asthose
found in the motor control system, which may serve to reduce the high dimensionality of the problem),
while the latter provides examples of group behaviors with stable dynamics (ranging from small groups of
animalsto large hierarchical human organizations). In all cases, the control islocated within the individual,
and based on distributed, low-computation, local methods, consisting of networks of interacting behaviors.
For example, in the case of amobilerobot, the underlying behavior substrate may be a basis set of avoid,
aggregate, disperse, follow, communicate, listen, and the resulting group behavior can produce high
complex and adaptive group structures resulting from the interaction dynamics within the agents' behavior
system (i.e., from activation and inhibition influences among behaviors), and among the agentsin the
environment. Importantly, our work focuses on control strategies, and not on locomotion mechanisms, so
it can be applied to a variety of rover types. In fact, our work is currently being applied to legged, tracked,
and underwater vehicles. Sincethe original motivation for our work comes from space applications, we are
particularly eager to get involved in a discussion of applying these biologically-inspired behavior-based
control methods to that domain.
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Issues in Coordinated Behavior

[ Locomotion

[ Power

[1 Sensing

[0 Communication

[0 Coordination and Cooperation

Adaptation & Learning
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The Basis Behavior

Aproach

1 Use well-defined behaviors as primitives for:
o control, representation, and learning

[0 Behaviors:

o are goal-driven control laws

o exploit the system dynamics

o achieve and/or maintain goals
A small basis set of behaviors 1is:

o hand-coded, learned, or evolved
o used as a substrate for higher-level behaviors




BEHAVIOR STRUCTURE
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Combining Basic Behaviors

e temporal overlap — summing.
e temporal exclusion — switchiing.

basic composite SERSO
behaviors behaviors - mpuisw




Examples of
Combining Basic Behaviors

basic composite sensory
behaviors behaviors inputs
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effector
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Strengths of the Approach

[ Behavior-based control has proven to be:
o robust
reactive
extensible
o low-computational overhead
The basis behavior approach is:
o biologically inspired and motivated

o principled
o scaleable (through combination operators)



Demonstrations to Date

[I Large-scale (<= 14 multi-robot coordination
I A range of robot sizes
o Kheperas (1.5” x 2”) to Pioneers (24" x 127)

Homogeneous and heterogeneous groups

Different types of locomotion
o 2 wheels, 4 wheels, tracks, helicopters, 6 legs

A broad range of tasks

Adaptive and learning capabilities
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[J Coordinated movement
o loose coordination: following, flocking, chaining,
homing, dispersion, aggregation
o tight coordination: formations, object pushing/moving

Distributed mapping

o indoor, outdoor

Distributed collection
o foraging, de-mining, sample return

Robot soccer




Adaptation & Learnin

I Distributed map learning

J Learning to collect/forage in a group

O Cooperative object pushing/moving

[ Learning social rules (e.g., yield, communicate)

On-line group reconfiguration (e.g., territories)

On-line dynamic task division

New task learning by imitation



The Learning Approach

[J On-line and in real-time (minutes)
(1 Using the behavior substrate

o behavior selection, combination, new behaviors
[0 Low-overhead methods

o statistics and adapted reinforcement learning

o elevated representational substrate (behaviors, networks)
o exploiting a priori structure and bias (not tabula raza)
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w1 he Learning Approach, cont.

1 Fast adaptation to changing environments
o dealing with nonstationarity
o capturing dynamics in real time
[0 Utilizing multiple robots
o communication for handling credit assignment and
hidden state (due to sensor limitations and noise)

Imitation and social learning
o positive feedback (recruitment)
o skill and goal transfer



Fnabling Technologies

I Sensors

o smaller, cheaper, more ubiquitous tactile & vision
1 “Social” sensors

o who is the other guy, where is (an)other guy, etc.

Power for locomotion (not computation)

Communication

| Miniturization for scalability
o for critical mass, emergent behavior studies




Key Properties/Strengths

- Low computational overhead

1 Physical and computational robustness
[ Scalability
1 Generality/reusability of basic behaviors.

1 Reconfigurability

Adapti-vity
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